SPRING 2024: BONUS PROBLEM 5

BP 5. Let C be an $s \times t$ matrix with entries in \mathbb{R}. Suppose $u \in \mathbb{R}^{t}$ is a column vector with the following property: u is in the null space of C and u^{t} is in the row space of C. Prove that $u=\overrightarrow{0}$. Due at the start of class on Friday, April 19. (5 points)
Solution 1. Let R_{1}, \ldots, R_{s} denote the rows of C, so that $R_{1} u=\cdots=R_{s} u=0$, where $R_{i} u$ means the row R_{i} times the column u. If u^{t} is in the row space of C, then we may write $u^{t}=a_{1} R_{1}+\cdots+a_{s} R_{s}$, where each $a_{i} \in \mathbb{R}$. Then

$$
u^{t} u=\left(a_{1} R_{1}+\cdots+a_{s} R_{s}\right) u=a_{1}\left(R_{1} u\right)+\cdots+a_{s}\left(R_{s} u\right)=a_{1} 0+\cdots+a_{s} 0=0
$$

If $u=\left(\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{t}\end{array}\right)$, from $u^{t} u=0$, we have $\alpha_{1}^{2}+\cdots+\alpha_{t}^{2}=0$, which means each $\alpha_{i}=0$, and therefore, $u=0$.
Solution 2. We have $C u=\overrightarrow{0}$, since u is in the null space of C and $u^{t}=v^{t} C$, for some $v \in \mathbb{R}^{s}$, since u^{t} is in the row space of C. Thus, $u^{t} u=\left(v^{t} C\right) u=v^{t}(C u)=0$. By the last sentence of the proof above, $u=\overrightarrow{0}$.

