SPRING 2024: BONUS PROBLEM 5

BP 5. Let C be an $s \times t$ matrix with entries in \mathbb{R} . Suppose $u \in \mathbb{R}^t$ is a column vector with the following property: u is in the null space of C and u^t is in the row space of C. Prove that $u = \vec{0}$. Due at the start of class on Friday, April 19. (5 points)

Solution 1. Let R_1, \ldots, R_s denote the rows of C, so that $R_1 u = \cdots = R_s u = 0$, where $R_i u$ means the row R_i times the column u. If u^t is in the row space of C, then we may write $u^t = a_1 R_1 + \cdots + a_s R_s$, where each $a_i \in \mathbb{R}$. Then

$$u^{t}u = (a_{1}R_{1} + \dots + a_{s}R_{s})u = a_{1}(R_{1}u) + \dots + a_{s}(R_{s}u) = a_{1}0 + \dots + a_{s}0 = 0.$$

If $u = \begin{pmatrix} \alpha_{1} \\ \vdots \end{pmatrix}$, from $u^{t}u = 0$, we have $\alpha_{1}^{2} + \dots + \alpha_{t}^{2} = 0$, which means each $\alpha_{i} = 0$, and therefore, $u = 0$.

 $\langle \alpha_t \rangle$

Solution 2. We have $Cu = \vec{0}$, since u is in the null space of C and $u^t = v^t C$, for some $v \in \mathbb{R}^s$, since u^t is in the row space of C. Thus, $u^t u = (v^t C)u = v^t (Cu) = 0$. By the last sentence of the proof above, $u = \vec{0}$.